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Transition Probability

Transition probability at a time τ between two states y3 → y2 in a τ

exspansion

Pτ (y3|y2) = δ(y3 − y2) + W (y3|y2)τ + O(τ2)

W (y3|y2) = dtP(y3|y2) transition rate
Normalizing: α(y2) =

∫

W (y3|y2)dy3

Pτ (y3|y2) = (1 − τα(y2))δ(y3 − y2) + W (y3|y2)τ

= δ(y3 − y2) + W (y3|y2)τ − W (y2|y3)τ + O(τ2)

A Chemical reaction: R1 + R2 ⇋ P1 + P2 Fermi’s Rule: λif = 2π
~
|Mif |2ρf

R1

R2

P1

P2

|n >
|m >
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Chapman-Kolmogorow equation

The probability of a Markov process depends only on the probability of the last
process

P(yn |yn−1, , y1) = P(yn |yn−1)

We assume a stationary (P(t) = P(t + τ)) and homogenues process
(P(t1, t2) = P(t1 − t2)) (a more general case is the Boltzmann equation)
The conditional probability between the state y3 and y1 can be written:

P(y3|y1) =

∫

P(y3|y2)P(y2|y1)dy2

One step process: Brownian motion, shot noise, dacay.
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Continous master equation

We derivate the conditional probability with respect to the first order
∂τP(y3|y2) = W (y3|y2) − W (y2|y3)
The derivative of the conditional probability is:

∂τP(y3|y1) =

∫

(

W (y3|y2)P(y2|y1) − W (y2|y3)P(y3|y1)
)

dy2

We remove the stationarity condition, multiply by P(y1, t) and integrate over
x1

dtP(y, t) =

∫

W (y, y ′)P(y ′, t) − W (y ′, y)P(y, t)dy ′

Einstein coefficients: Spontaneus emission Amn , Absorption: BnmJ , Stimulated

emission: BmnJ
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Discrete master equation

A chemical reaction generation/ricombination (discrete, nonlinear) X
W
⇋

W †
2X :

Ṗn = W †n(n + 1)Pn+1 + W (n − 1)Pn−1 − W †nPn − Wn(n − 1)Pn

The master equation says that the probability of a transition in a time t is
the sum of the gain in changing from m → n minus the loss between n → m

(n − 1) (n) (n + 1)
W W †

In the steady state the lhs of the master equation is zero
P

m
WnmPm = (

P

m
Wmn)Pn

Detailed balance: WnmPm = WmnPn

Detailed balance is necessary but not sufficient for the equilibrium (microscopic

reversibility)
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Fokker-Planck equation

The evolution of a single event P(t) is governed by the master equation which
describes all statistical properties.
We recast the integro equation of a master equation into the form of a
Kramers-Moyal expansion (r = x − x ′, small)

∂tP(x , t) = P(x , t)

∫

W (x |r)P(x , t)− W (x | − r)P(x , t)dr

−
∫

r∂x (W (x |r)P(x , t))dr +
1

2

∫

r2∂2
x (W (x |r)P(x , t))dr ± . . .

or

Ṗt(x ) =
∑

n

−n

n!
∂n
x D

(n)
KMPt(x ) D

(n)
KM (x , t) =

1

n!
lim
τ→0

1

τ
< (x (t + τ) − x (t))n >

From the Pawula Theorem one can either use the first moment, the first and
the second or every of them
In Most of the case two moments are enough, (e.g. Gaussian noise):
Fokker-Planck equation

Ṗ(x , t) = −∂xD
(1)P(x , t) + ∂2

xD
(2)P(x , t)
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From master equation to stochastic differential equation

We consider the equation:

ẋ(t) = X (x ) + ξ(t)

The moments of the noise ξ are connected with the Kramers-Moyal
expansion

lim∆→0
1

∆

∫ τ∆

τ

ds < ξ(s)|x (t) = x0 >= D
(1)
KM − X (x )

lim
∆→0

1

∆

∫ τ+∆

τ

dt1 . . .dtn < ξ(t1) . . . ξ(tn)|x (t) = x0 >= D
(n)
KM

The first moment is deterministic, the higher oder stochastic (mesoscopic
description)
Considering the same moments the following SDEq is equivalent to the
previous MEq
A non zero mean of the noise contributes to a drift term

P. Hanggi Z., Physik B, 43, 269-273,(1981)
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Flux

From the Fokker-Planck equation we define a flux

J := −D (1)X (x )P(x ) +
1

2
D (2)P(x )

The FPEq can be written as a conservation law:

∂tP(x ) − ∂xJ (x ) = 0

Tipical boundary condition

Natural (decay):
∫

P(x ) = norm

Reflecting (wall): J (x = a, t) = 0

Absorbing (first passage time): P(x = a, t) = 0
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Neuron dynamics, role of noise

The dynamics of the voltage in a neuron is ruled by the equation:

V̇ (t) = −V (t)

τ
+ I (t) I (t) = µ + σwη(t) + σw

β√
2τc

z (t)

Where η(t) is a white noise and z (t) is an auxiliary colored noise, V is a
potential between H and Θ

C (t , t ′) =< (I (t)− < I (t) >)(I (t ′)− < I (t ′) >) >= σ2
wδ(t − t ′) +

Σ2

2τc
e−

|t−t′|
τc

The Fokker-Planck equation is:



∂V

(

f (V ) − µ +
σ2

2
∂V

)

+
1

τc
∂z (z + ∂z ) −

√

2σ2α2

τc
∂V



P = −δ(V − H )J (z )

The firing rate ν is the probability per unit time that the potential cross a
threshold Θ. J (z ) is the escape probability current.
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Firing rate

P(V , z ) is the staedy state probability. We suppose τc < τref (correlation,
refractory).

J (z ) =
νout√

2π
e−x2/2

z after a spike relaxes to the stationary distribution. The Fokker-Planck has
to be resolved with the normalisation condition

νoutτref +

∫ Θ

−∞

dV

∫ ∞

−∞

dzP(V , z ) = 1

Finally the output firing rate is give by

νout =

∫

dzJ (z )
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Summary

Transition prob

MEq
Langevin

Kramers-Moyal

Fokker-Planck

Olstein-Uhlenbeck Neuronal model

Stochastic

Noise distribution

Continuous

Two moments

Dissipative
Non-gaussian noise
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Langevin equation

ẋ = X (x ) + ξ(t)

The probability distribution P(y, t) is defined as:

P(y, t) =< δ(y − x (t)) >ξ

Advection (drift) term D (1): ẋ = X (x )

∂tP(y, t) = −ẋdyδ(y − x ) = −X (x )dyδ(y − x ) = −dy(δ(y − x )F (x ))

= −dy(δ(y − x )F (y)) = −dy(F (y)P(y, t))

Diffusive term D (2): ẋ = ξ(t)

P(x , t) =
1√

2π∆t
e−

y2

2∆t ∂tP(x , t) =
D (2)

2
∂2
xP(x , t)

∂tP(x , t) = −D (1)∂xP(x , t) + D (2)∂2
xP(x , t)
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Ornstein-Uhlenbeck process

We start from the dissipative Langevin equation

∆v(t) = −γv(t) + σ∆ξ(t)

The KM coefficients are D (1) = −γv , D (2) = σ2

2

The stationary solution is given by Ṗ(x )
!
= 0

P(v) =

√

m

2πkBT
e
− v2m

2KBT
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