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Infomation in Natural Images

How much information do they carry?

Are they organized in some specific structures?

Do they belong to a specific class of universality?
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A picture is composed by n×m matrix of pixels
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Every pixel contains an array of R, G, B, (eventually α as transparency) which have values within

0, 255 which define the intensity I of the picture.
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The hystogram shows the distribution of the intensities in the picture
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We turn the image into a gray scale image
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We turn the image into a gray scale image for different coarse grained pixel: 1:4
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We turn the image into a gray scale image for different coarse grained pixel: 1:16
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We turn the image into a gray scale image for different coarse grained pixel: 1:32
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We define the contrast as φ() := log(I(x)/I0) where I0 : N(φ < 0) = N(φ > 0)
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If we calculate the probability distribution

we see that for different coarse grained pixel the plot shows long tails
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If we calculate ist gradient |∇φ|
The distribution is quite precisely exponential
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We calculate the median of the distribution and assign 0 (black) for every intensity below

the median and 1 (white) for every intesities above. The pixel are equally populated
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We calculate the median of the distribution and assign 0 (black) for every intensity below

the median and 1 (white) for every intesities above. The pixel are equally populated Coarse

grained: 1:4
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We calculate the median of the distribution and assign 0 (black) for every intensity below
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The power spectrum in the loglog plot shows a clear power law
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The full distribution is invariant to block scaling if we coarse-grain and quantize (top) or

quantize and coarse-grain (bottom)
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We consider a receptor cell with a contrast noise of variance σ2 and a Nyquist frequency of kc.

The power spectrum is connected with the
autocorrelation (Th. Wiener-Khintchin)

< φ(x)φ(x′) >:=
R

d2k
(2π)2

Sφ(k)eık(x−x′)

Among all the distributions, the gaussian has the
maximum entropy. In this assumption one can connect
the autocorrelation of the picture with the information
conveyed

I ≤ πNπ/2

k2c

R
d2k

(2π)2
log2

“
1 +

(1−k/kc)2
π2σ2 k2

cSφ(k)
”

The signal to noise ration of a single cell is

RSNR = 1
σ2

R
d2k

(2π)2
(1− k/kc)1Sφ(k)

I ≤ 1
2
N π

2

R 1
0 dxx log2

“
1 +

η(η+1)(η+2)
π

RSNR
(10x)2

x2−η

”

A single receptor can produce a spike
when the signal overcome a certain
threshold
The upper bound we have shown tells
that the information contained in a
natural image is less than a bit per
receptor.

A channel that transmit the
information to the brain can have
capacity lower than 1/2 bit/receptor
to convey all the information

D.L. Ruderman, dissertation, University of California at Berkley, 1993
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Ising 2d model

Do the black/white pixels remember to the (↑, ↓) of the Ising model?

A region of L square pixel has 2L×L

states, considering the entropy:
S(3× 3) = 6.580± 0.003 < 9bit,
S(4× 4) = 11.154± 0.002bit

To the sample s of L× L we
associate an energy. The Boltzmann
probability distribution for a given
“Temperature” is

One can define new different
quantities, the heat capacity

A natural image will be compared to a
Monte Carlo simulation of the same
system size of a Ising system

Z(T ) = 1
∆

R
dEeS(E)−E/T

P (s) = 1
Z(T )

e−E(s)/T

S(T ) = −
P
s P (s) logP (s)

C(T ) = T∂TS(T ) =
<(δE(s))2>T

T2
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Zipf’s law

A patch in a picture is as a word in a book

Zipf’s law
Pr ∝ 1/rα

If we identify the energy for a given rank of a Boltzmann
distribution the energy for the rank r is Er = α ln r = lnAZ

In the thermodynamic limit the density of states
ρ(E) ' |dE/dr|−1 = r/α which gives
ρ(E) = 1

α
(AZ)1/αeE/αeE/α SZipf (E) = E/α+ const

α ' 1, r rank

pr = A/rα
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A patch in a picture is as a word in a book

Zipf’s law
Pr ∝ 1/rα

If we identify the energy for a given rank of a Boltzmann
distribution the energy for the rank r is Er = α ln r = lnAZ

In the thermodynamic limit the density of states
ρ(E) ' |dE/dr|−1 = r/α which gives
ρ(E) = 1

α
(AZ)1/αeE/αeE/α SZipf (E) = E/α+ const

Most common patches

α ' 1, r rank

pr = A/rα
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The natural images repeat specific patterns and contain more information.
Can one increase the resolution? Cheating in physics

The previous analysis shows a long correlation between
the structure

Considering many natural images one can, as was done
to compress the natual languages, finding the two
dimensional correlation between the words.

The correlation should be, as we already said, both

universal and dependent on the photographer and on

the landscape.

Once we have calculated the correlation function for

our picture, can we substitute different coarsed grained

order of pathces?

Even the Fourier space would be sensitive to repeated

structures (Bragg’s planes)
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Proving an increment in resolution

To test different methods to
increase the resolution one could
Resize the original image to a
coarse-grained one

Try different methods to create
one with more resolution

Compress the original images
into its more probable pathces

Compare the created images
with the original one

Cc = 1
N4

P
ijkl(pij − pkl)

2,

Ca = 1
N2

P
ij(pij − pij)

2

Will be the information increased whithin the error?
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Thank you for your attention
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